
Depth Bounded Explicit State Model Checking

Abhishek Udupa‡ Ankush Desai† Sriram Rajamani†

‡ University of Pennsylvania
† Microsoft Research India

Abstract. We present algorithms to efficiently bound the depth of the
state spaces explored by explicit state model checkers. Given a parame-
ter k, our algorithms guarantee finding any violation of an invariant that
is witnessed using a counterexample of length k or less from the initial
state. Though depth bounding is natural with breadth first search, ex-
plicit state model checkers are unable to use breadth first search due to
prohibitive space requirements, and use depth first search to explore large
state spaces. Thus, we explore efficient ways to perform depth bounding
with depth first search. We prove our algorithms sound (in the sense
that they explore exactly all the states reachable within a depth bound),
and show their effectiveness on large real-life models from Microsoft’s
product groups.

1 Introduction

Model Checking is an algorithmic technique to systematically explore the reach-
able states of a system’s model, and verify if the system satisfies specified proper-
ties [6, 23, 9]. Though model checking has been successful in several academic and
industrial efforts to find bugs and prove properties of various systems ranging
from coherence protocols [7], telephone software [12], OS components [20] and
device drivers [3] two main obstacles remain: (1) usually models of the system
need to be written at a level of abstraction that is amenable for model checking,
and (2) for large systems, the number of states is too large to be explored with
a reasonable amount of space and time.

The second problem is referred to as “state explosion” in the model checking
community and several optimizations have been studied extensively, such as such
as symbolic model checking [4],partial order reduction [11, 17], symmetry reduc-
tion [24], automated abstraction-refinement [8, 3, 14]. Even with all of the above
optimizations, model checkers are still unable to cope with the state spaces of
very large models. To cope with such large state spaces, bounding techniques
have been proposed to systematically explore a part of the state space. No-
table examples of bounding are Bounded Model Checking(usually abbreviated
as BMC) [5], context bounding [22, 21, 19], and domain size bounding [16]. The
key idea with bounding based approaches is given by the “small-scope hypoth-
esis” [16], which states that if a model is buggy then the bug will most likely
manifest by exploring all states systematically after bounding a parameter (such
as depth, input size, number of processors, and number of context switches).

In this paper, we discuss a new algorithm for depth bounding —that is ex-
ploring all states of a model that are reachable within a given depth— with
iterative deepening of the depth bound. While BMC techniques solve this prob-
lem using symbolic model checking, the corresponding analog for explicit state
model checking has not been studied carefully before. Large software models
have features such as unbounded call stacks and dynamically allocated memory
which make it impossible to even build a symbolic transition relation for the
model, and explicit state model checking is currently the only viable alternative
for checking such models. Thus, it is important to be able to do systematic depth
bounding for explicit state model checking.

The obvious way to bound depth in explicit state model checking is to use
breadth first search. However, using breadth-first search in explicit state model
checking is very expensive in terms of space, particularly if each state consumes
a lot of storage. The common way to avoid memory explosion in explicit state
model checking is to use depth first search, and store only fingerprints or bit-
state hashes [15, 25] for each visited state. For states on the DFS stack, only the
top most state needs to be stored in full —the remaining states can be stored in
terms of incremental differences or undo logs from the states above them in the
DFS stack. Thus, most explicit state model checkers use DFS instead of BFS in
order to scale to large models.

In such a setting (DFS based explicit state model checking), implementing
depth bounding efficiently and correctly is quite non-trivial. The obvious way to
bound depth is to record the depth of each state, and simply stop exploring a
state if has been either visited earlier, or if the current depth exceeds the depth
bound. However, as we show in Section 2, this algorithm is incorrect, since the
same state can be visited at different depths, and can lead to missing states
that can be explored within the given depth bound. Alternatively, we can record
the depth of each state in the state table, and re-explore a state if the current
exploration depth is lesser than the previous exploration depth. This is a correct
algorithm, and is indeed guaranteed to explore all states that are reachable
within a depth bound. However, as our empirical data shows, this results in the
same state being explored several times with different depths and the algorithm
is very inefficient. In this paper, we describe a new algorithm that maintains
additional information for each visited state and greatly reduces the number of
times a state is revisited, while ensuring that all states that can be reachable
within the depth bound are indeed explored.

Since it is hard to pick a good depth bound apriori, depth bounding works
best if we can iteratively increment the bound and explore as much depth of
the state space as we can, within our time and space budget. Such an iterative
depth bounded search combines elements of both depth first search and breadth
first search. In order to save space in iterative depth bounded search, frontier
states at each depth bound are represented using traces(a trace of a state S, is
sequence of edge indices along a path from the initial state to S) and a full state is
produced on demand by replaying the trace representing the state. However, for
a trace of length d producing a full state by replaying takes time O(d), and the

replay overhead becomes large for large values of d. We propose a data structure
called frontier tree to greatly reduce the replay overhead during iterative depth
bounding.

The main motivation for our work came from a product group’s desire to use
our model checker to explore state spaces of very large models from Microsoft
product groups, including models of distributed transaction managers, and mod-
els from components of the Windows Operating System used to manage devices
connected to the USB (Universal Serial Bus). We show empirical results showing
effectiveness of our algorithms on these models.

To summarize, this paper makes the following contributions:

– First, it presents a new algorithm to efficiently and correctly perform itera-
tive depth bounded search with explicit state model checkers.

– Second, it presents a data structure called frontier tree to greatly reduce the
replay overhead during iterative depth bounding.

– Third, it presents empirical performance results obtained by applying our
approach on several large models from Microsoft’s product groups.

Our efforts have resulted in our model checker being used day-to-day in a pro-
duction setting. The Windows group uses our depth bounded model checker as
key component in design validation.

Though we focus on checking safety properties, our techniques can be adapted
to check liveness properties as well. In particular, we describe how our techniques
can be adapted to be used as a pre-processing technique for the nested depth first
search algorithm of Corcoubetis, Vardi, Wolper and Yannakakis [10] to search
systematically for all lassos within a given depth bound.

The remainder of the paper is organized as follows. Section 2 gives back-
ground on explicit state model checkers. Section 3 describes the Iterative Depth
Bounded Search problem and develops our algorithms for this problem. Section 5
describes how our algorithms can be adapted to check liveness properties. Sec-
tion 6 presents empirical results. Section 7 describes related work, and Section 8
concludes the paper.

2 Background

In this section, we give some background about how explicit state model checkers
work.

We assume the existence of the following datatypes. A S tate datatype is
used to represents states of the system we want to explore. It has the following
members: (1) the property fp returns the finger print of the state, (2) the property
Depth returns the depth at which the state has been encountered. Set is a generic
datatype, which supports three methods: (1) the Add method takes an object
and adds it to the set, and (2) the Contains method returns true if the object
passed as parameter is present in the set, and false otherwise, and (3) the Remove
method removes the object passed as parameter if that object is present in the

1: Set〈F ingerprint〉 DoneStates
2:
3: void doDfs(State currentState) {
4: if not DoneStates.Contains(currentState.fp) then
5: DoneStates.Add(currentState.fp)
6: for all successors S of currentState do
7: doDfs(S)
8: end for
9: end if
10: }
11:
12: void DFS(State initialState) {
13: DoneStates= { }
14: doDfs(initialState);
15: }

Fig. 1. Simple Explicit State DFS algorithm

set. We instantiate Set with fingerprints of states in this section. In later sections
we also instantiate Set with states to represent frontier sets.

The fingerprints of states have the property that identical states are guaran-
teed to have identical fingerprints. That is:

∀S1,S2 ∈ S tate.S1 = S2 ⇒ S1.fp = S2.fp

Though the converse of the above implication does not hold, the probability of
two different states having the same fingerprint can be made extremely low (see
[15, 25]).

Figure 1 shows the simple DFS algorithm implemented by most explicit
state model checkers. The fingerprints of all explored states is stored in the
set DoneStates. The core of the algorithm is the recursive method doDfs, which
is called with the initial state. It works by checking if the current state has is
already in the set DoneStates, and if not, adds it to DoneStates, and invokes
itself on all its successors.

DFS is a very space efficient algorithm for explicit state model checking,
since we need to store only fingerprints for explored states. Only states that are
on the DFS stack need to be represented in memory as full states. A further
optimization is possible— we only need to store the top of the DFS stack as
a full state. For every state S that is inside the DFS stack, we can represent
S using its difference from the state T that is above S in the DFS stack. This
technique is called “state delta” and is routinely used in several explicit state
model checkers (see, for instance [2]).

In the next section, we use another generic datatype H ashtable. We instanti-
ate H ashtable with fingerprints as keys and integer values in the next section. It
supports the following methods: (1) the Add method, which adds a new key-value
pair to the table. (2) the Contains method, which returns true if the specified key
is in the hash table. (3) the Update method, which takes as input a key-value
pair and updates the table with the new value if the key is already present and
adds the key-value pair to the table otherwise.

1: bool IterBoundedDfs(State initialState, int depthCutoff, int inc) {
2: initialState.Depth= 0
3: Set〈State〉 frontier = {initialState}
4: Set〈State〉 newFrontier= {}
5: int currentBound = inc
6: while currentBound ≤ depthCutoff do
7: newFrontier = BoundedDfsFromFrontier(frontier, currentBound)
8: if newFrontier = {} then
9: return(true)
10: else
11: currentBound = currentBound + inc
12: frontier = newFrontier
13: end if
14: end while
15: return(false)
16: }
17:
18: Set〈State〉 outFrontier
19: /* outFrontier is a global variable which gets updated inside BoundedDfs*/
20: BoundedDfsFromFrontier(Set〈State〉 frontier, int currentBound) {
21: outFrontier= { }
22: for all F∈ frontier do
23: BoundedDfs(F, currentBound)
24: end for
25: return(outFrontier)
26:

Fig. 2. Iterative Depth Bounded Search Algorithm

In later sections, we show how to systematically bound the depth of explored
states in DFS, without missing any states. For the purposes of soundness proofs
of our algorithms, we assume that fingerprints are not lossy. That is,

∀S1,S2 ∈ S tate.S1 = S2 ⇔ S1.fp = S2.fp

This assumption allows us to separate soundness concerns about our algorithms
from soundness concerns about fingerprints.

3 Depth Bounded Search

In this section, we modify the simple explicit state DFS algorithm given in Sec-
tion 2 to visit a state if and only if it is reachable within d steps from the initial
state, and iteratively increasing d. As mentioned in Section 1, our motivation is
that the state spaces of several systems are too large to be completely explored,
and in such circumstances, it is desirable to systematically explore all states
within a given depth bound under the small scope hypothesis [16].

Figure 2 gives the outer loop for iterative depth bounded search. The
IterBoundedDfs method takes three arguments: (1) initialState, which is the ini-
tial state of the model, (2) depthCutoff, which is the depth cutoff bound for the
search and (3) inc, which is the amount by which the depth bound is increased
in each iteration. We assume that depthCutoff > 0, inc > 0, and that depthCutoff
is divisible by inc.

The method IterBoundedDfs works by repeatedly calling the
BoundedDfsFromFrontier method (line 7) in the while loop from lines 6–14. If

1: Set〈F ingerprint〉 DoneStates
2: /* initialized to null-set once in the beginning */
3:
4: Set〈State〉 outFrontier
5: /* initialized to null-set in BoundedDfsFromFrontier*/
6:
7: void BoundedDfs(State currentState, int depthBound) {
8: if ¬ DoneStates.Contains(currentState.fp) then
9: if currentState.Depth < depthBound then
10: DoneStates.Add(currentState.fp)
11: for all successors S of currentState do
12: S.Depth = currentState.Depth + 1
13: BoundedDfs(S, depthBound)
14: end for
15: else
16: outFrontier.Add(currentState)
17: end if
18: end if
19: }

Fig. 3. Näıve Unsound Depth Bounded DFS algorithm

all states in the model are reachable within depthCutoff, then IterBoundedDfs
returns true, otherwise, it returns false.

The BoundedDfsFromFrontier method takes the current frontier set frontier
and a depth bound currentBound as parameters, explores all the states starting
from the current frontier set frontier that are reachable within currentBound more
steps, and returns a new set of frontiers newFrontier.

The implementaton of BoundedDfsFromFrontier is shown in lines 20–25. It
calls the BoundedDfs function for each state in the froniter set. The BoundedDfs
function thus takes a single state and a depth bound and explores all the states
that are reachable within the depth bound. States that are reached exactly at the
depth bound are added by BoundedDfs to the global set outFrontier to be explored
further in the next call to BoundedDfsFromFrontier. The design of BoundedDfs is
a deceptively simple problem at the outset, but one that is quite tricky, if our
goal is to be both efficient and correct.

Näıve Unsound Depth Bounded DFS. To give the reader an appreciation
for the difficulty in designing BoundedDfs efficiently and correctly, we present our
first attempt in Figure 3. We refer to this approach as Näıve Unsound DBDFS.
Recall that the goal of the BoundedDfs() algorithm is to explore all the states that
are reachable within the bound depthBound starting from the input parameter
currentState. This algorithm is similar to Figure 1, except that a state is explored
only if it is encountered at a depth less than the current depth bound (see the
conditional at line 8 of Figure 3). If not, then it is added to outFrontier (line 16)
to be explored in the next depth bounded iteration.

The algorithm in Figure 3 is incorrect in the sense that it may not explore all
the states that are reachable within the given bound depthBound. For instance
if a state Sis reached initially with a depth of d and later with a depth d′ < d,
the algorithm does not explore the state S, the second time around, which could
lead to not exploring some states, although these states are reachable within the
given depth bound. For instance, consider the state space shown in Figure 4. If

Fig. 4. Example where the algorithm shown in Figure 3 does not cover all reachable
states

1: Hashtable〈F ingerprint, int〉 DoneStates
2: /* initialized to null-set once in the beginning */
3:
4: Set〈State〉 outFrontier
5: /* initialized to null-set in BoundedDfsFromFrontier*/
6:
7: bool mustExplore(State S) {
8: if DoneStates.Contains(S.fp) then
9: if DoneStates.Lookup(S.fp) ≤ S.Depth then
10: return(false)
11: end if
12: end if
13: return(true)
14: }
15:
16: void BoundedDfs(State currentState, int depthBound) {
17: if mustExplore(currentState) then
18: if currentState.Depth < depthBound then
19: DoneStates.Update(currentState.fp, currentState.Depth)
20: outFrontier.Remove(currentState)
21: for all successors S of currentState do
22: S.Depth = currentState.Depth + 1
23: BoundedDfs(S, depthBound)
24: end for
25: else
26: outFrontier.Add(currentState)
27: end if
28: end if
29: return

Fig. 5. Näıve Sound Depth Bounded DFS

the algorithm is run with a depth-bound of 3, with s1 as the initial state, and if
e1, e2 and e4 are traversed, adding s1.fp, s2.fp and s3.fp to DoneStates. At this
point, the algorithm determines that s4 is at the depth cut-off and adds it to
the frontier set. When the recursion unwinds to the state s1, it does explore the
state s3, since s3.fp ∈ DoneStates already. Thus, the algorithm misses the state
s5, even though s5 is reachable within three steps (recall that our depth bound
is 3) from s1 via e3 − e4 − e5.

Näıve Sound Depth Bounded DFS. Figure 5 shows our second attempt,
which we refer to as Näıve Sound DBDFS, where we fix the issue of missing
states, by tracking the minimum depth at which a state has been reached so far.
That is, we use a hashtable DoneStates (rather than a set) to store fingerprints
of visited states. For each visited state S, the hashtable DoneStates maps the
fingerprint of S to the minimum depth the state has been reached so far. When a
state S is re-visited, the mustExplore method compares the current depth S.Depth

with the smallest depth at which S has been encountered so far (which is stored
in DoneStates). If the current depth is smaller, then the state is re-explored with
the (smaller) depth and the DoneStates hashtable is updated is updated to reflect
this. All the states that are precisely at the depth bound are added to outFrontier.
The declaration of outFrontier, and the body of the BoundedDfsFromFrontier
functions are the same as before.

Note that a state that is added to outFrontier at line 26 may indeed later
be found to have a shorter path to it. Consequently, in line 20, we invoke
outFrontier.Remove for currentState since currentState is currently visited with
depth less than the given depth bound, and may have been added to outFrontier
earlier.

Below, we state lemmas and a theorem to prove that the algorithm in Figure 5
is correct in the sense that it explores exactly all the states that are reachable
from the input frontier set within the depth bound, and that all the states whose
shortest distances equal the depth bound are returned in the output frontier.

Lemma 1. Consider the invocation of the method BoundedDfs from the initial
state with a depth bound d. Consider any state S whose shortest path from the
initial state is ` < d, where S is the depth bound. Then, the method BoundedDfs
in Figure 5 eventually explores S through a path of length ` from the initial state,
and updates the value for key S.fp to ` in the hashtable DoneStates.

Proof. By induction on `. For ` = 0 the only state is the initial state, and it
is easy to check that the fingerprint for the initial state is stored in DoneStates
mapped to the value 0. Consider any state S with shortest path ` from the
initial state. Consider any shortest path P from the initial state to S. Let A be
the predecessor of S in P . By induction hypothesis, the algorithm eventually
explores A at depth `− 1 (since P is a shortest path, the shortest distance from
the initial state to A is `− 1). At that instant, either S will be revisited with a
depth `, or S has already been visited at depth ` through another shortest path
P ′ from the initial state. In either case, the proof is complete.

Lemma 2. Consider the invocation of the method BoundedDfs from the initial
state with a depth bound d. For any state S, we have that S ∈ outFrontier on
completion of the call to BoundedDfs iff the shortest path from the initial state
to S is d.

The Proof of Lemma 2 follows from Lemma 1. Note that a state S with
shortest path ` < d may be initially added to outFrontier if it is first visited
through a path of length d. However, when it is later revisited through a path
of length ` < d, it will be removed from outFrontier.

Theorem 1. The algorithm shown in Figure 5, in conjuction with the algorithm
in Figure 2, run with a depth increment of i and a depth bound d, explores a
state if and only if it is reachable from the initial state via at least one path of
length less than or equal to the depth bound d.

Proof. As mentioned earlier, we assume that i > 0, d > 0 and d divides i. The
Theorem follows by repeated application of Lemma 1 and Lemma 2 for each
level of the iterated depth bounded DFS.

Though the algorithm in Figure 2 is correct, it is very inefficient in practice,
and it ends up revisiting the same state several times (see Section 6). Next, we
present an improvement to reduce the number of revisits.

1: Hashtable〈F ingerprint, int〉 DoneStates
2:
3: 〈bool, int〉 mustExplore(State S) {
4: if DoneStates.Contains(S.fp) then
5: if S.Depth < DoneStates.Lookup(S.fp) then
6: return(〈true, DoneStates.Lookup(S.fp)〉)
7: else
8: return(〈false, DoneStates.Lookup(S.fp)〉)
9: end if
10: else
11: return(〈true, S.Depth〉)
12: end if
13: }
14:
15: int BoundedDfs(State currentState, int depthBound) {
16: int threshold = ⊥
17: int myThreshold = −1
18: bool needsexploration = false
19: 〈needsexploration, threshold〉 = mustExplore(currentState)
20: if ¬needsexploration then
21: return(threshold)
22: end if
23: if currentState.Depth < depthBound then
24: DoneStates.Update(currentState, currentState.Depth)
25: outFrontier.Remove(currentState)
26: for all Successors S of currentState do
27: S.Depth = currentState.Depth + 1
28: threshold= BoundedDfs(S, depthBound)
29: myThreshold = max(myThreshold, threshold− 1)
30: end for
31: DoneStates.Update(currentState, myThreshold)
32: else
33: outFrontier.Add(currentState)
34: myThreshold = currentState.Depth
35: end if
36: return(myThreshold)
37: }

Fig. 6. Optimized Depth Bounded DFS algorithm

Optimized Sound Depth Bounded DFS. Figure 6 presents our improved
algorithm for depth bounded DFS. We will refer to this as Optimized Sound
DBDFS. The main idea in the improved algorithm is to propagate some addi-
tional information up the call stack whenever a successor need not be explored
to avoid unnecessary revisits to states.

The key idea in this algorithm is to propagate the reason why a state need not
be explored upwards in the call stack (which represents the depth bounded DFS
stack) by maintaining a threshold value for each state S ∈ DoneStates. Intuitively

this corresponds to the depth at which the state needs to be re-explored so that
there is a possibility of exploring a previously unexplored state.

The algorithm works as follows: Associated with each state S in DoneStates,
we maintain a threshold (instead of the least depth at which S has been en-
countered as before). The threshold of a state represents the depth at which the
state needs to be re-explored. It is guaranteed that exploring the state at a depth
greater than the threshold will never result in exploring new states. Obviously,
for a given state S ∈ DoneStates, we have that threshold(S) ≤ S.Depth and the
threshold for a given state is non-increasing over the course of the algorithm
execution. Whenever the mustExplore function returns false, indicating that a
state need not be explored, it also returns a threshold value for the state. The
BoundedDfs function then calculates and updates the threshold for a state S as
the maximum of the thresholds of all its successors minus one, thus propagating
the threshold values up the call stack.

We use the expression threshold(S), where S is a state to represent the thresh-
old value for S as stored in LiveStates. Also, we use the expression minDepth(S)
to represent the length of the shortest path from the initial state to S. Also, we
define a frontier state as a state which is reachable by a shortest path of length
exactly d from the initial state, and an internal state as a state which is reachable
by a shortest path of length l < d, for a given depth-bounded iteration. Below,
we state lemmas and a theorem that establishes correctness of the optimized
depth bounded DFS algorithm.

Lemma 3. For a given state S if threshold(S) < minDepth(S) at some point in
the execution of the algorithm shown in Figure 6, then S is not along the shortest
path from the initial state to some frontier state.

Proof. Suppose that a S was along the shortest path from the initial state to a
frontier state F and that threshold(S) < minDepth(S). Consider the point of time
during the execution of the algorithm that the update to threshold(S) making it
less than minDepth(S) occurred. Since the updates occur after all the recursive
calls have completed, it must be the case that S was explored during the call at
which the update occurred. Since S is along the shortest path to some frontier
state F either the frontier itself was reached and the recursive returns along this
path effectively propagated the depth at which S was encountered back to S,
in which case threshold(S) = S.Depth, a contradiction! The other case is that
the frontier was not explored along this path due to S not being encountered
at its minimum depth. In this case as well, some other state F′ will be added
to the frontier and threshold(S) will again be set to S.Depth. But S.Depth ≥
minDepth(S) =⇒ threshold(S) ≥ minDepth(S), which is again a contradiction,
completing the proof.

Lemma 4. Exploring a state S when encountered at a depth greater than the
threshold(S) will not result in any new states being discovered in the current
depth bounded iteration.

Proof. For all the states S where threshold(S) ≥ minDepth(S), the proof holds
from Theorem 1, since in this case, the optimized algorithm is equivalent to

Fig. 7. Frontier tree

the näıve algorithm. For the cases where threshold(S) < minDepth(S), we have
from Lemma 3 that these states are not along the shortest path to any frontier
state. This implies that all states S′ that are reachable from S are also reachable
at a lower depth via some other state. The threshold calculations in this case
effectively propagate the depth at which this Smust be re-explored in order to
have any possibility of exploring new states.

Theorem 2. The algorithm shown in Figure 6 in conjunction with the algorithm
shown in Figure 2, when run with a depth bound d, explores all states that are
reachable within d states from the initial state.

Proof. We can conclude this result from Lemma 4 and Theorem 1; Since the
algorithm in Figure 6 is essentially the same as the algorithm in Figure 5, except
for the decision to re-explore or not which is based on the threshold instead of
the depth of the state.

Section 6 gives empirical data with shows that the Optimized Depth Bounded
DFS algorithm greatly reduces the number of revisits to states without compro-
mising on correctness.

4 Frontier Trees to Optimize Replay Overhead

Though the optimized depth bounded DFS algorithm in Figure 6 greatly reduces
the number of revisits for a state, we still have the issue that the space required to
store the frontier states at each iteration of the depth bounded search explodes
with increasing depth. In particular, the amount of storage required to store
the set outFrontier in Figure 2 becomes prohibitively expensive for large depths.

Thus, we end up storing in lieu of each state s in outFrontier a trace t, which
is a path from the initial state to s. If the length of the path is d, the storage
requirement for t is O(kd) bits for some small k, since at each level we only need
to store a unique identifier for each outgoing edge from each state. In contrast,
the storage requirement for a state s is on the order of hundreds of kilobytes for
the large models we have. However, the price paid for storing t instead of s is
that we finally need s in order to explore successors of s, and generating s from
t takes time O(d), which becomes expensive for large d.

1: class FrontierNode {
2: FrontierNode p
3: Trace t
4: }
5:
6: State getState(FrontierNode f , State sf , FrontierNode g) {
7: FrontierNode a = LowestCommonAncestor(f ,g)
8: t = TraceFrom(g, a)
9: sa = sf .UnwindTo(a)
10: sg = sa.ExecuteTrace(t)
11: return (sg)
12: }

Fig. 8. Using frontier trees to optimize replay overhead

To optimize the trade-off between space and time, we introduce a data struc-
ture called frontier tree. Instead of storing states at the frontier, we store a
FrontierNode for each state (see Figure 8) with two fields: (1) a pointer p to the
parent node, and (2) a trace t from the parent node p to this node. Figure 7
shows a pictorial description of the frontier tree that is formed using the frontier
nodes at various levels. Suppose we have just finished exploring all the successors
of frontier node t1 in Figure 7. Next, we need to explore the successors of t2. To
get the state corresponding to t2, if we replay the trace associated with t2 all
the way from the initial state, the replay would take O((n+ 2)d) time. Instead,
we can find the least common ancestor of t1 and t2 in the frontier tree, which
is s1, and do the following: (1) first construct the state corresponding to s1 by
executing the undo logs from s1 to t1 using “state-delta” (See Section 2), and
(2) replay only the trace from s1 to t2 to get the state corresponding to t2. This
can be done in O(2d) time, since it takes O(d) time to execute undo logs from
t1 to s1 and another O(d) time to execute the trace from s1 to t2. Procedure
getState in Figure 8 shows that given a frontier node f with corresponding state
sf , we can construct the state corresponding to frontier node g by unwinding to
the least common ancestor a of f and g, and replaying only the trace from a to
g.

As shown by our empirical results in Section 6, this greatly reduces the
overhead of replay and hence the overall execution time of the iterative depth
bounded search.

5 Liveness

Though we focus on checking safety properties, our techniques can be adapted
to check liveness properties as well.

Let Θ be the set of all states of a model that are reachable from the initial
state. Let Θd ⊆ Θ be the set of all states that can be reached from the initial
state at a depth of d or less. Let Γ ⊆ Θ be a set of Büchi states.

Our algorithms can be adapted to look for all lassos which consist of a “stem”
from an initial state to a state S ∈ Γ and a cycle back to S such that all states
in the lasso are reachable within a distance d from the initial state.

In particular, consider the nested depth first algorithm of Corcoubetis, Vardi,
Wolper and Yannakakis [10]. Given a depth bound d, we can first compute Θd

using the techniques given in Section 3 and Section 4. Then, we can restrict
the search in both phases of the nested DFS algorithm to remain within Θd.
This can be proved to search for all lassos such that all states in the lasso are
reachable within a distance d from the initial state.

6 Empirical Results

We have implemented both the optimized iterative depth bouding DFS algorithm
(Figure 6, Section 3) as well as the frontier tree optimization (Section 4) in the
Zing model checker [1, 2].

The Zing model checker has two components: (1) a compiler for translating
a Zing model into an executable representation of its transition relation, and
(2) a model checker for exploring the state space of the Zing model.

The Zing modeling language has several features that capture the essence
of modern concurrent object oriented languages, including procedure calls with
a call-stack, objects with dynamic allocation, processes with dynamic creation,
and facilities for using both shared memory and message passing for inter-process
communication. A “choose” construct is provided that can be used to non-
deterministically pick an element out of a finite set of integers, enumeration
values, array members or set elements.

We were able to implement both the optimized iterative depth bounding
DFS algorithm, and the frontier tree optimization fully inside the model checker,
without making any changes to the Zing compiler.

Table 1 compares the number of revisits of states for the optimized depth
bounded DFS algorithm(Figure 6) and the naive depth bounded DFS algo-
rithm(Figure 5 for fixed depth cutoffs. The models used for the comparison
are all large real-life models used by product groups inside Microsoft. The first
two models, TMCompletionEventFixed and TMHashTableFixed are models of
a distributed transaction manager. The remaining models ISM, PSM20, PSM30,
DSM and HSM are all various state machine components of the USB stack in-
side the Windows operating system. As the results show, the optimized algorithm
greatly reduces the number of states that are revisited, without compromising
on the soundness. The reduction in the number of revisits is model dependent. In

Model Depth-Cutoff Distinct States Revisits Revisits Reduction in
Explored Naive Optimized number of

(Figure 5) (Figure 6) revisits (%)
TMCompletionEventFixed 1000 231056 52322 24489 53.2%

TMHashTableFixed 1000 3000230 1902332 113163 99.4%
ISM 1000 4924340 24038436 23168493 3.6%

PSM20 2700 649886 3834495 2205435 42.5%
PSM30 3000 145361 3233021 1967829 39.1%
DSM 6000 423348 3133430 1822287 42%
HSM 16000 186899 438923 287846 34.3%

Table 1. Number of revisits for a fixed depth bound

most models, the optimized algorithm reduces the number of revisits by 35-42%.
We found two extreme cases —in one model (ISM) the reduction in the number
of revisits is only 3% and in another model (TMHashTableFixed) the reduction is
99.4%. We have empirically verified that the number of distinct states explored
by the optimized algorithm in Figure 6 is exactly the same as the number of
states explored by the naive algorithm in Figure 5, thereby providing empirical
confirmation of Theorem 2.

Model Depth
Without Frontier-Tree With Frontier-Tree Reduction in
Execution getState() Execution getState() execution
Time(sec.) Time(sec.) Time(sec.) Time(sec.) time (%)

TMCompletionEventFixed 1000 89.9 15.8 130.32 04.22 -44.9%
TMHashTableFixed 1000 1281.3 253.98 1233.75 47.262 3.7%

ISM 1000 3006.021 621.5066 2430.9 64.135 19.1%
PSM20 2700 7411.6 4183.8 3033.727 284.093 59.1%
PSM30 2700 1674.7 951.36 704.96 115.36 57.9%
DSM 6000 15023.77 9695.36 4391.64 535.506 70.8%
HSM 16000 6529.723 4579.131 1113.81 364.66 82.9%

Table 2. Time to explore a fixed depth with and without frontier tree

Table 2 shows the execution times for these models with and without the
frontier tree optimization. We also show the time spent by the model checker
in the getState method. The results both establish that (1) the time required to
replay traces to generate full states for the frontier is a significant fraction of
the total execution time, and (2) the frontier tree optimization greatly reduces
the reply overhead. For the first two models (TMCompletionEventFixed and
TMHashTableFixed), the total depth of the state space is low and it is more
efficient to replay from the initial state rather than compute the least common
ancestor using frontier trees. For the remaining models with larger depths, the
performance gains from using frontier trees is significant.

Suppose we have a fixed time budget (say a few hours or a few days). Then,
it is useful to investigate how many more distinct states can be explored using
our optimizations. Table 3 shows this data for 4 different models. The fourth
column is the number of distinct states we were able to explore with both the

Model
Time Distinct States Explored Peak Memory Usage

budget Naive (Figure 5) Optimized (Figure 6) Improvement in No Frontier Frontier
(hh:mm:ss) No Frontier Tree Frontier Tree number of states(%) Tree Tree

ISM 2:30:00 5933009 7499284 26.4% 1644 MB 1712 MB
PSM30 3:30:00 499074 1461939 192.9% 1201 MB 1341 MB
PSM20 5:30:00 859004 2232549 159.9% 767 MB 872 MB
DSM 5:30:00 92305 1243204 1246.8% 1108 MB 1127 MB

Table 3. States explored and peak memory usage for a fixed time budget

optimized search (Figure 6) and frontier tree enabled. The third column shows
the number of distinct states we could explore with the naive algorithm (Figure
5) with frontier tree disabled (that is, without the optimizations). We note that
in all models, the fourth column is significantly bigger than the third column,
showing that under a fixed time budget, our algorithms allow exploring orders
of magnitude more states. We also note that the frontier tree optimization adds
only a very small memory overhead, as evidenced by the data in the last two
columns.

Together, the optimized depth bounded algorithm and the frontier tree opti-
mization has enabled our model checker to scale and handle several large models
constructed by Microsoft’s product groups. One product group uses the checker
as part of its design validation and it has found several hundred design bugs due
to concurrency and asynchrony. The details of the bugs found are not relevant
to the focus of this paper, which is on the optimization algorithms, so we do not
present them.

7 Related Work

The use of fingerprints to save storage in model checkers was first introduced by
Holzmann who called it “bit-state hashing” [15]. Holzmann’s SPIN model checker
also supports bounded depth first search, but it does not attempt to optimize
the number of revisits or the replay overhead, which are the main contributions
of our work.

The use of traces instead of states to space has been observed before in
software model checking. In particular, Verisoft [12] is a stateless model checker,
which only remembers traces of states to save space, and works essentially by
replaying traces from the initial state. The use of “state delta” or undo logs to
store only differences between states on the DFS stack has been explored before
in several model checkers such as CMC [20], JPF [13] and Zing [2]. Frontier trees
combine the use of traces and undo logs to greatly reduce the replay overhead
during iterative depth bounded DFS.

While at first glance, our approach to depth-bounding looks similar to the
iterative deepening algorithms such as IDA* [18], there are significant differences.
The approach presented in [18] and other related work primarily aims to reduce
the number of states visited while arriving at an optimal solution. In contrast,

the work presented in this paper aims to reduced the number of revisits to a given
state, while ensuring that every state which is reachable, given the depth bound,
is indeed explored. Also, the algorithms along the lines of the algorithm presented
in [18] require the use of a heuristic cost-function f with some characteristics:
specifically, that f never overestimate the true cost of exploring a given path
and that f have some monotonicity properties. In our context, since a bug can
manifest anywhere, the use of such monotonic cost metrics is not feasible.

8 Conclusion

We presented algorithms to systematically bound the depth of the state spaces
explored by explicit state model checkers. Since explicit state space model check-
ers use DFS for space efficiency, depth bounding is non-trivial to do correctly
and efficiently. In particular, we presented a bounding algorithm to greatly avoid
the number of revisits of states, and a new data structure called Frontier Tree
to optimize the replay overhead during iterative depth bounding. Our depth-
bounded model checker has been used by product groups inside Microsoft to
successfully find several hundred bugs in large real-life models, and the use of
depth bounding was crucial in these applications.

Currently, we are working on parallelizing the depth-bounded model checker
in both multicores and clusters of workstations. We plan to present these results
in a future paper.

Acknowledgment. We thank Randy Aull, Tom Ball, Vivek Gupta, Vlad Levin,
Aditya Nori and Shaz Qadeer for helpful discussions.

References

1. T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xie. Zing: A model
checker for concurrent software. In CAV 2004: Computer Aided Verification, LNCS
3114, pages 484–487. Springer-Verlag, 2004.

2. T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xie. Zing: Exploiting
program structure for model checking concurrent software. In CONCUR 2004:
Concurrency Theory, LNCS 3170, pages 1–15. Springer-Verlag, 2004.

3. T. Ball and S. K. Rajamani. The SLAM Project: Debugging system software via
static analysis. In POPL 02: Principles of Programming Languages, pages 1–3.
ACM, January 2002.

4. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. In LICS 90: Logic in Computer Science,
pages 428–439, 1990.

5. E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using
satisfiability solving. Formal Methods in System Design, 19(1):7–34, 2001.

6. E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branch-
ing time temporal logic. In Logic of Programs, pages 52–71, 1981.

7. E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMillan, and
L. A. Ness. Verification of the futurebus+ cache coherence protocol. In CHDL:
Computer Hardware Description Languages and their Applications, pages 15–30,
1993.

8. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In CAV 00: Computer-Aided Verification, LNCS 1855,
pages 154–169. Springer-Verlag, 2000.

9. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
1999.

10. C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory efficient
algorithms for the verification of temporal properties. In CAV 90: Computer Aided
Verification, LNCS 531, pages 233–242. Springer-Verlag, 1990.

11. P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem. Springer-Verlag, 1996.

12. P. Godefroid. Software Model Checking: The Verisoft Approach. Formal Methods
in System Design, 26:77–101, 2005.

13. K. Havelund and T. Pressburger. Model checking Java programs using Java
PathFinder. International Journal on Software Tools for Technology Transfer
(STTT), 2:366–381, 2000.

14. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In POPL
’02: Principles of Programming Languages, pages 58–70. ACM, January 2002.

15. G. J. Holzmann. An analysis of bitstate hashing. Form. Methods Syst. Des.,
13:289–307, 1998.

16. D. Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press,
2006.

17. S. Katz and D. Peled. Verification of distributed programs using representative
interleaving sequences. volume 6, pages 107–120. 1992.

18. R. E. Korf. Depth-first Iterative-deepening: An Optimal Admissible Tree Search.
In the Journal of Artificial Intelligence, 27:97–109, September 1985.

19. A. Lal and T. Reps. Reducing concurrent analysis under a context bound to
sequential analysis. Form. Methods Syst. Des., 35:73–97, 2009.

20. M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler, and D. L. Dill. CMC:
a pragmatic approach to model checking real code. SIGOPS Oper. Syst. Rev.,
36:75–88, 2002.

21. M. Musuvathi and S. Qadeer. Iterative context bounding for systematic testing
of multithreaded programs. In PLDI 07: Programming Languages Design and
Implementation, pages 446–455. ACM, 2007.

22. S. Qadeer and D. Wu. KISS: Keep it simple and seqeuential. In PLDI 04: Pro-
gramming Language Design and Implementation, pages 14–24. ACM, 2004.

23. J. Queille and J. Sifakis. Specification and verification of concurrent systems in
cesar. In International Symposium on Programming, volume 137, pages 337–351.
1982.

24. A. P. Sistla and P. Godefroid. Symmetry and reduced symmetry in model checking.
ACM Trans. Program. Lang. Syst., 26:702–734, 2004.

25. U. Stern and D. L. Dill. Improved probabilistic verification by hash compaction. In
CHARME 95: Correct Hardware Design and Verification Methods, volume LNCS
987, pages 206–224. Springer-Verlag, 1995.

